

Chemistry 20 Review

This is a collection of notes with examples and problems to get you up to speed and ready for the rigors of Chemistry 30.

HHPS Symbols

HHPS Borders

WHMIS Symbols

Biohazardous Infectious

Poisonous and infectious causing immediate /serious toxic effects

Oxidizing

Compressed Gas

Poisonous and infectious causing other toxic effects

Flammable/ combustible

Dangerously reactive

MATERIAL SAFETY DATA SHEET

III. PHYSICAL DATA

ODOR, APPEARANCE AND PHYSICAL STATE
Slightly opaque colorless liquid with subtle petroleum solvent odor.

IV. PROTECTION INFORMATION

RESPIRATORY: Use MSHA or NIOXH respirator for handling vapor or mist.	VENTILATION: Always use with Good ventilation.
EYE: Safety glasses for working with vapors or mists.	SKIN: Protective gloves or clothing generally not needed.
OTHER PROTECTIVE DEVICES AND PROCEDURES: Generally not required. Avoid prolonged breathing of mist. Wash hands after handling. Wash soiled work clothing frequently.	

+ Periodic Table Review

6	lanthanoids (including rare earths)
$\longrightarrow 7$	actinoids (including transuranic elements)

Metals vs. Non-metals

- Metals - grouped on the left side of the periodic table (most of the elements are metals)
- Physical Properties:
- Shiny solids at SATP
- High conductivity of heat and electricity
- Ductile (can be formed into wires)
- Malleable (bendable and can be beaten into thin sheets)
$■$ Non-metals - grouped on the right side of the periodic table
- Physical Properties:
- May be solid, liquid or gas at SATP
- Poor conductors of heat and electricity
- Solid forms are non-lustrous and brittle

Sig Dig Review

1. For all non-logarithmic values, regardless of decimal position, any of the digits \mathbf{l} to 9 is a significant digit.
$\begin{array}{lllll}123 & 0.123 & 0.00230 & 2.30 \times 10^{3} & 2.03\end{array}$ all have 3 significant digits
2. Leading zeros are not significant. For example:
0.12 and 0.012 each have two significant digits
3. The Learner Assessment Branch considers all trailing zeros to be significant. For example:

200 has three significant digits
0.12300 and 20.000 each have five significant digits
4. For logarithmic values such as $\mathbf{p H}$, any digit to the left of the decimal is not significant. For example:
a pH of 1.23 has two significant digits
a pH of 7 has no significant digits

+ Sig Dig Review

- Manipulation of Data Rules

1. For adding and subtracting, round answer to the same degree of precision as the least precise number. (If this is the only operation)

$$
12.3+0.12+12.34=24.76 \text { rounded to } 24.8 \text { (one decimal place) }
$$

2. For multiplying and dividing, round answer to the same number of sig digs as the number with the fewest sig digs.
$(\mathbf{1 . 2 3})(54.321)=66.81483=$ round to 66.8 (3 sig digs)
3. When a series of calculations is done, do not round interim answers. The final answer should be rounded to the same number of significant digits as the number with the fewest sig digs in the original data.
4. When calculations involve exact numbers (counted and defined values) the calculated answer should be rounded based upon the precision of the measured value(s).

12 eggs $\times 52.3 \mathrm{~g} / \mathrm{egg}=627.6 \mathrm{~g}$

Practice

Name the number of significant digits present:
a) 12.65 g
b) 0.01 mL
c) 67.8456 L
d) 0.00375 kg
e) 0.21 N
f) 403.00 mg
g) 2.010 J
h) pH 5.67
i) pH 7.5
j) $2.50 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Practice

2. Perform the following calculations and express the answer to the correct number of sig digs:
a) $87.6 \mathrm{~g}-4.36 \mathrm{~g}=$
b) $14.62 \mathrm{~g} \mathrm{x} 2.3 \mathrm{~g}=$
c) $(2.53 \mathrm{~mL} \times 11.43 \mathrm{~mL}) \div(3.4 \mathrm{~mL}-0.533 \mathrm{~mL})=$
d) $(0.33 \mathrm{mx} 23 \mathrm{~m}) \div 4.65 \mathrm{~m}=$
e) $(1.3 \mathrm{~mm}+13.40 \mathrm{~mm}) \times\left(23.3 \mathrm{~mm} \times 4.06 \times 10^{3} \mathrm{~mm}\right)=$

Multivalent Ions - metals that can form more than one stable ion charge (can be determined from the anion it is joined with)

Ex. Fe has a Fe^{2+} and a Fe^{3+} ion
(Looking at the periodic table, which is more common?)
$\mathrm{FeO}_{(\mathrm{s})}$ - oxygen has a 2^{-}charge so Fe must be the 2^{+}charge
CHECK: $1(-2)+1(+2)=0$ the net charge is zero so Fe^{2+} is the correct ion
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ - there are 3 oxygen's with the 2- charge $=-6$ so to be balanced by 2 iron ions, we must be using the Fe^{3+} ion CHECK: $3(-2)+2(+3)=0$ the net charge is zero so Fe^{3+} is the correct ion

Naming Multivalent Ions:

- Roman numeral numbers are used so that the reader knows which ion to use
-Ex. Fe^{2+} is the iron(II) ion (no space)
Fe^{3+} is the iron(III) ion (no space)

Hydrates - ionic compounds that have water held

 loosely to the compound-Decompose at relatively low temp. to produce water and an ionic cmpd
-Water within an ionic crystal is called the "water of hydration"

- Anhydrous - a compound that is usually a hydrate but the water of hydration has been removed
- Writing the chemical formula for hydrates:

See Figure 7 pg. 31

- A large dot is use in the formula to connect the ionic compound formula unit with the number of water molecules present
- Ex. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$

Naming Hydrates:

- Name the ionic compound first then:
a) add "-\#- water (no spaces) IUPAC NAME
b) add "mono, di, tri, etc. hydrate" Traditional NAME
- Ex. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$
-IUPAC $=$ copper(II) sulfate-5-water
-Traditional = copper(II) sulfate pentahydrate

Naming Ionic Compounds

1. If your compound is ionic and you have the formula:
a) the name of the metallic element appears first
b) the name of the non-metallic element appears la
*Its ending is changed to "ide", except if it comes from the polyatomic ion table
c) always use lowercase letters
d) if you're dealing with a transition metal (multivalent element) that can
form more than one stable ion, use Roman Numerals, in brackets, to indicate the charge

Practice:

1) $\mathrm{CaCl}_{2}=$ calcium chloride change non-metallic ending to "ide"
2) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}=$ magnesium phosphate from polyatomic ion table - don't change ending
3) $\mathrm{SnO}_{2} \quad=\operatorname{tin}(\mathrm{IV})$ oxide tin has a +2 or +4 ion possible; had to use Roman numerals to show we were dealing with Sn ${ }^{4+}$

+ Writing Ionic Formulas

2) If your compound is ionic and you have the name:
a) the symbol for the metallic element comes first
b) the symbol for the non-metallic element comes last
c) you need a net charge of zero, so subscripts are used to indicate the ratio of ions in the compound.
d) if using polyatomic ions, make sure to put brackets around the ion if there are
multiples of it present
e) all ionic compounds are solid at SATP so add a (s) subscriot

Practice:

l) barium phosphide $=$	Ba^{2+}	P^{3-}	$=\mathrm{Ba}_{3} \mathrm{P}_{2(\mathrm{~s})}$
check:	$3(+2)+2(-3)$	$=0$ net charge	

2) $\begin{aligned} & \text { nickel(II) oxide }=\mathrm{Ni}^{2+} \\ & \text { check: }(+2)+\mathrm{O}^{2-} \\ &=(-2)=0 \text { niO }(\mathrm{s}) \\ &\end{aligned}$
3) copper(II) phosphate $=\mathrm{Cu}^{2+} \quad \mathrm{PO}_{4}{ }^{3-}=\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$ check: $3(+2)+2(-3)=0$ net charge

Memorized Molecular Compounds

Reference Table 3 pg. 34

IUPAC Name	Formula and State at SATP	
water	$\mathrm{H}_{2} \mathrm{O}_{(\\|)}$	
hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2(\\|)}$	
ammonia	$\mathrm{NH}_{3(\mathrm{~g})}$	
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}$	
sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}$	
methane	$\mathrm{CH}_{4(\mathrm{~g})}$	
propane	$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$	
octane	$\mathrm{C}_{8} \mathrm{H}_{18(\\|)}$	
methanol	$\mathrm{CH}_{3} \mathrm{OH}_{(\\|)}$	
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\\|)}$	
hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$	

Naming Acids

■ Systematic IUPAC

1) aqueous hydrogen chloride $\mathrm{HCl}_{(\mathrm{aq})}$
2) aqueous hydrogen chlorate $\mathrm{HClO}_{3(\mathrm{aq})}$
3) aqueous hydrogen chlorite
$\mathrm{HClO}_{2(\mathrm{aq})}$

■ Traditional

1) hydrogen \qquad ide $=$ hydro \qquad ic acid ex. hydrogen chloride $=$ hydrochloric acid
2) hydrogen \qquad ate $=$ \qquad ic acid
ex. hydrogen chlorate $=$ chloric acid
3) hydrogen \qquad ite $=$ \qquad ous acid
ex. hydrogen chlorite $=$ chlorous acid

Remember: acid contains sulfur = you add a ur acid contains phosphorus = add an or
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$ sulfuric acid $\mathrm{H}_{3} \mathrm{PO}_{4(a q)}$ phorphoric acid

Practice - Naming Acids

$-\mathrm{HClO}_{4(\mathrm{aq})}$
$-\mathrm{HClO}_{(\mathrm{aq})}$
$-\mathrm{HNO}_{2(\mathrm{aq})}$
$-\mathrm{HNO}_{3(\mathrm{aq})}$
$-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
$-\mathrm{H}_{2} \mathrm{SO}_{3(\text { aq })}$
$-\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$

IUPAC
aqueous hydrogen perchlorate
aqueous hydrogen hypochlorite
aqueous hydrogen nitrite
aqueous hydrogen nitrate
aqueous hydrogen sulfate
aqueous hydrogen sulfite
aqueous hydrogen phosphate

Traditional
perchloric acid
hypochlorous acid
nitrous acid
nitric acid
sulfuric acid
sulfurous acid
phosphoric acid

Naming Review

■ Read Pages l-2 of your Chemistry 30: Introduction Review Booklet
-Work on:

Worksheet \#l Naming Ionic Compounds
Worksheet \#2 Naming Mixed Ionic/covalent Compounds
Worksheet \#3 Naming hydrates
Worksheet \#4 Naming Acids
*You are encouraged to use you Chemistry Data Booklet. *

+ Molecular Elements

■ Many molecular elements are diatomic and some are polyatomic

- You will need to memorize the formulas of the 9 molecular elements as they will not be given to you:

Name	Symbol
hydrogen	$\mathrm{H}_{2}(\mathrm{~g})$
nitrogen	$\mathrm{N}_{2}(\mathrm{~g})$
oxygen	$\mathrm{O}_{2}(\mathrm{~g})$
fluorine	$\mathrm{F}_{2}(\mathrm{~g})$
chlorine	$\mathrm{Cl}_{2}(\mathrm{~g})$
iodine	$\mathrm{I}_{2}(\mathrm{~g})$
bromine	$\mathrm{Br}_{2}(\mathrm{~g})$
phosphorou s	$\mathrm{P}_{4}(\mathrm{~g})$
sulfur	$\mathrm{S}_{8}(\mathrm{~g})$

P_{4}

Balancing Review

- When counting elements, don't forget to look at both the subscript and the coefficient.
- For example:
$\mathrm{P}_{2} \mathrm{O}_{5}=$ has 2 phosphorus atoms and 5 oxygen atoms
$2 \mathrm{P}_{2} \mathrm{O}_{5}=$ has 4 phosphorus atoms and 10 oxygen atoms

Because there are 2 molecules (indicated by the coefficient) and 2 atoms in each molecule (indicated by the subscript) -

> So you multiply!!

Balancing Review

- Never change a subscript to balance an equation!

$$
\begin{aligned}
& \mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \text { Is unbalanced - but you can't } \\
& \text { change it the following way! }
\end{aligned}
$$

- Make sure the coefficients are the lowest whole-number ratio :

$$
2 \mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

This is a balanced formula but these are not the lowest numbers you could use:

$$
\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Balancing Chemical Equations

1) Write the chemical formulas for the reactants and products including the states

- $\mathrm{Cu}_{(\mathrm{s})}+\mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$

2) Balance the element (atom or ion) present in the greatest number by multiplying by the lowest coefficient possible

- $\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}=2$ present (lowest coefficient possible to balance $=2$)
- $\mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{AgNO}_{3(a \mathrm{q})} \rightarrow \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq)}}$

3) Repeat step 2 for the rest of the elements

- Now we have 2 Ag , so balance the other side
- $\mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow 2 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$

4) Count elements on each side of the final equation to ensure they balance:

- ${ }_{1} \mathrm{Cu}_{(s)}=1 \mathrm{Cu}_{(s)} ; 2 \mathrm{Ag}=2 \mathrm{Ag}_{(s)} ; 2 \mathrm{NO}_{3}=\left(\mathrm{NO}_{3}\right)_{2(a q)}$

Predicting Chemical Reactions

Match the five reaction types to the examples provided:

- Composition (Formation)
- Decomposition
$-\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$-\mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{MgO}_{(\mathrm{s})}$
$-\mathrm{Cu}_{(\mathrm{s})}+\mathrm{AgNO}_{3(\text { aq) }} \rightarrow \mathrm{Ag}_{(\mathrm{s})}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~g})}$
- Combustion
$-\mathrm{CaCl}_{2(\mathrm{aq)}}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}} \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{NaCl}_{\text {(aq) }}$
- Single Replacement
- $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
- Double Replacement

Balancing and Predicting Chemical Reactions Review

-Work on Page 7 of Review Booklet
-Topic 2: Balancing Chemical Reactions

Mole and Molar mass

- A mole is a counting unit. It tells us how many objects there are.
- A pair $=2$ dozen $=12 \quad$ mole $=6.02 \times 10^{23}$ objects
- What is the molar mass of methanol $\mathrm{CH}_{3} \mathrm{OH}$?

$$
\begin{aligned}
& \mathrm{C}=12.01 \mathrm{~g} / \mathrm{mol} \times \mathrm{l}=12.01 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{H}=1.01 \mathrm{~g} / \mathrm{mol} \times 4=4.04 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{O}=16.00 \mathrm{~g} / \mathrm{mol} \times \mathrm{l}=16.00 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Molar mass of methanol $=32.05 \mathrm{~g} / \mathrm{mol}$

Convert the following:

1) $\mathbf{5 . 0} \mathbf{~ m o l}$ of NaOH to grams:

Molar Mass of $\mathrm{NaOH}: 40 \mathrm{~g} / \mathrm{mol} \rightarrow \mathbf{1 ~ m o l}=40 \mathrm{~g}$

$$
5.0 \mathrm{mbl} \times \underset{1 \mathrm{mbl}}{40 \mathrm{~g}}=200 \mathrm{~g}
$$

2) $\mathbf{3 6 0} \mathbf{g}$ of glucose to moles:

Molar Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}: 180.18 \mathrm{~g} / \mathrm{mol} \rightarrow 1 \mathrm{~mol}=180.18 \mathrm{~g}$

$$
\begin{aligned}
360 \mathrm{~g} \times \underline{\mathrm{mol}} & =1.998 \mathrm{~mol} \\
180.18 g & =2.0 \mathrm{~mol}
\end{aligned}
$$

Mole Review

- Work on Page 8 and 9 of the Review Booklet

Topic 3 Mole Review and Mole Conversions
Determining the number of moles in a sample

SUMMMARY

Substance	Process	General Equation
Molecular	Disperse as individual, neutral molecules	$\mathbf{X Y}(\mathbf{s} / \mathbf{l} / \mathrm{g}) \rightarrow \mathbf{X Y}$ (aq)
Ionic	Dissociate into individual ions	$\mathbf{M I X}(\mathbf{s}) \rightarrow \mathrm{MI}^{+}{ }_{(\mathrm{aq})}+\mathbf{X}^{-}{ }_{(\mathrm{aq})}$
Base (ionic hydroxide)	Dissociate into positive ions and hydroxide ions	$\mathrm{MOH}_{(\mathrm{s})}^{\rightarrow \underset{(\mathrm{aq})}{ } \mathrm{M}^{+}}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}$
Acid	Ionize to form hydrogen ions and anions	$\mathbf{H X}_{(\mathrm{s} / 1 / \mathrm{g})}^{\rightarrow \mathbf{H}_{(\mathrm{aq})}^{+}} \underset{(\mathrm{aq})}{ }+\mathbf{X}^{-}$

+ Net Ionic Equations

- A chemical reaction equation that includes only reacting entities (molecules, atoms and/or ions) and omits any that do not change
- Writing Net Ionic Equations:
- 1) Write a complete balanced chemical equation
- 2) Dissociate all high-solubility ionic compounds, and ionize all strong acids to show the complete ionic equation
- 3) Cancel identical entities that appear on both the reactant and product sides
- 4) Write the net ionic equation, reducing coefficients if necessary

Practice

When cancelling spectator ions, they must be identical in every way: chemical amount, form (atom, ion, molecule) and state of matter

- Write the net ionic equation for the reaction of aqueous barium chloride and aqueous sodium sulfate. (Refer to the solubility table)

1) $\mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaCl}_{(\mathrm{aq})}$ (Nonionic equation)
2) $\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
(Total or Complete ionic equation)

■ 3) $\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$

- 4) $\mathrm{Ba}^{2+}{ }_{(\mathrm{aq}))}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}$ (Net ionic equation)

■ Ions that are present but do not take part in (change during) a reaction are called spectator ions (like spectators at a sports game: they are present but do not take part in the game)

Net Ionic Review

- Complete page 10 of the Chemistry Review Booklet

Determining the Mass of Pure Solid for a Standard Solution

■ Use conversion factors to determine the values for both the amount in moles and the mass of solid required.

■ Because you are working with one substance, you do not need a balanced equation (No need for a mol ratio)

■ Volume of the solution and its molar concentration are needed.
■ Example: To prepare 250.0 mL of $0.100 \mathrm{~mol} / \mathrm{L}$ solution of sodium carbonate, the mass needed is:

$$
0.2500 \mathrm{~L} \times \frac{0.100 \mathrm{~mol}}{1 \mathrm{I} /} \times \frac{105.99 \mathrm{~g}}{1 \mathrm{mgl}}=2.65 \mathrm{~g}
$$

Solution Preparation Review

- Complete pg. 11 and 12 of the Review Booklet

Topic 5: Solutions and Ion Concentration

Practice \#l (Gravimetric Stoichiometry)

What mass of iron (III) oxide is required to produce 100.0 g of iron?

$$
\begin{gathered}
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})} \\
\mathrm{m}=? \quad \mathrm{~m}=100.0 \mathrm{~g} \\
\mathrm{M}=159.70 \mathrm{~g} / \mathrm{mol} \quad \mathrm{M}=55.85 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

$\mathrm{m} \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}: 100.0 \mathrm{~g} / \mathrm{x} \frac{\mathrm{mol}}{55.85 \mathrm{~g}} \times \frac{\mathrm{mol}}{2 \mathrm{~mol}} \times \frac{159.70 \mathrm{~g}}{1 \mathrm{~mol}}=143.0 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

Practice \#2 (Gas Stoichiometry)

- Hydrogen gas is produced when sodium metal is added to water.

What mass of sodium is necessary to produce 20.0L of hydrogen at STP?

- Remember: $22.4 \mathrm{~L} / \mathrm{mol}$ for STP

$$
\begin{aligned}
& 2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{m}=\text { ? } \quad \mathrm{V}=20.0 \mathrm{~L} \\
& 22.99 \mathrm{~g} / \mathrm{mol} \quad 22.4 \mathrm{~L} / \mathrm{mol} \\
& 20.0 \mathrm{~L}, \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{2 \mathrm{~mol}}{1 \mathrm{~mol}} \times \frac{22.99 \mathrm{~g}}{1 \mathrm{~mol}}=41.1 \mathrm{~g} \mathrm{Na}_{(\mathrm{s})}
\end{aligned}
$$

**Remember - molar volume is the conversion factor for gases just like molar mass is the conversion factor in gravimetric stoichiometry

Example \#3

If the conditions are not STP or SATP, the molar volume cannot be used! You must use the ideal gas law to find the gas values using (Gas Stoichiometry) moles determined from stoichiometry

- What volume of ammonia at 450 kPa and $80^{\circ} \mathrm{C}$ can be obtained from the complete reaction of 7.5 kg of hydrogen with nitrogen?

$$
\left.\mathrm{PV}=\mathrm{nRT} \quad \rightarrow \quad \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(2475.2475 \mathrm{~mol})\left(8.314^{\mathrm{kpa} \cdot \mathrm{~L}}\right.}{(450 \mathrm{kPa})} \mathrm{mol} \cdot \mathrm{~K}\right)(353.15 \mathrm{~K})
$$

$$
=16150.10 \mathrm{~L} \rightarrow \quad \mathbf{1 . 6} \times 1 \mathbf{0}^{4} \mathrm{~L} \text { of } \mathrm{NH}_{3(\mathrm{~g})}
$$

$$
\begin{aligned}
& 2 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \quad 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& \mathrm{m}=7500 \mathrm{~g} \quad \mathrm{~m}=\text { ? } \\
& \mathrm{M}=2.02 \mathrm{~g} / \mathrm{mol} \quad \mathrm{P}=450 \mathrm{kPA} \\
& \mathrm{~T}=353.13 \mathrm{~K} \\
& 7500 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{2.02 \mathrm{~g}} \times \frac{2 \mathrm{~mol}}{3 \mathrm{~mol}}=2475.2475 \mathrm{~mol} \mathrm{NH}_{3(\mathrm{~g})}
\end{aligned}
$$

+ Example \#4 (Solution Stoichiometry)

- Ammonia and phosphoric acid solutions are used to produce ammonium hydrogen phosphate fertilizer. What volume of $14.8 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3(\text { aq })}$ is needed to react with 1.00 kL of $12.9 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$?

$$
\begin{array}{lll}
2 \mathrm{NH}_{3(\mathrm{aq})} \\
\mathrm{V}=? & +\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \\
14.8 \mathrm{~mol} / \mathrm{L} & \mathrm{~V}=1.00 \mathrm{~kL} \\
& 12.9 \mathrm{~mol} / \mathrm{L} &
\end{array}
$$

$1.00 \mathrm{~kJ} / \times \frac{12.9 \mathrm{~m} / \mathrm{l}}{1 \mathrm{~J}} \times \frac{2 \mathrm{~mol}}{\operatorname{lm} 6 \mathrm{l}} \times \frac{1 \mathrm{~L}}{14.8 \mathrm{~m} \mathrm{ol}}=1.74 \times 10^{3} \mathrm{~L}$

Stoichiometry Review

Complete pg. 13 and 14 of the Review Booklet Gravimetric Stoichiometry
Gas Stoichiometry
Solution Stoichiometry
Limiting Reagents
-Theoretical and Percent Yield

+ Summary of Bonding Theory:

Chemical Bond $=$ competition for bonding electrons
1)Atoms with equal EN = electrons shared equally

If both have high EN = covalent bond (equal = non-polar)
If both have a low EN = metallic bond
2) Atoms with unequal EN = covalent bond (unequal = polar)
3) Atoms with unequal EN = ionic bond

Table 7 Using VSEPR Theory to Predict Molecular Shape

General formula*	Bond pairs	Lone pairs	Total pairs	Molecular shape	
				Geometry ${ }^{* *}$	Stereochemical formula
AX_{2}	2	0	2	linear (linear)	$X-\mathrm{A}-\mathrm{X}$
AX_{3}	3	0	3	trigonal planar (trigonal planar)	
AX_{4}	4	0	4	tetrahedral (tetrahedral)	
$\mathrm{AX}_{3} \mathrm{E}$	3	1	4	trigonal pyramidal (tetrahedral)	
$\mathrm{AX}_{2} \mathrm{E}_{2}$	2	2	4	angular (tetrahedral)	
AXE_{3}	1	3	4	linear (tetrahedral)	$A-X$

[^0]${ }^{* *}$ The electron pair arrangement is in parentheses.

+ Predicting and Explaining Polarity

- Pauling explained the polarity of a covalent bond as the difference in electronegativity of the bonded atoms.
- If the bonded atoms have the same electronegativity, they will attract any shared electrons equally and form a nonpolar covalent bond.
- If the atoms have different electronegativities, they will form a polar covalent bond.
$\stackrel{2.2}{\mathrm{H}}-\mathrm{Cl}$
δ^{-}
δ^{+}

We use the Greek symbol delta to show partial charges

- For a very large electronegativity difference, the difference in attraction may transfer one or more electrons resulting in ionic bonding.
$\mathrm{Cl}_{2(\mathrm{~g})}$
- The greater the electronegativity difference, the more polar the bond will be.

+ Intermolecular Forces

- There are three types of forces in matter:

1) Intranuclear force (bond) - bonds within the nucleus between protons and neutrons (very strong)
2) Intramolecular force (bond) - bonds between atoms within the molecule or between ions within the crystal lattice (quite strong)
3) Intermolecular force (bond) - bonds between molecules (quite weak); are electrostatic (involve positive and negative charges)

There are 3 types of intermolecular bonds:

Weakest
a) Dipole-Dipole Forces (a.k.a. Polar Forces)

Medium b) London Force (a.k.a. London Dispersion Force, Dis
Strongest c) Hydrogen Bonding
Note: "Van der Walls force" - includes London and dipole-dip
Intermolecular forces

[^0]: ${ }^{*} \mathrm{~A}$ is the central atom; X is another atom; E is a lone pair of electrons.

