Equilibrium in Chemical Reactions. (15\% of Chemistry 30)
What is happening in a system at equilibrium?
How do scientists predict shifts in the equilibrium of a system?
Key Concepts

- chemical equilibrium systems
- reversibility of reactions
- Le Chatelier's principle
- equilibrium law expression
- equilibrium constants K_{c}

1. Terms about equilibrium
a. at equilibrium, the macroscopic properties of a system remain constant.
b. macroscopic properties include observable properties - concentration, temperature, color and $\mathbf{p H}$
c. when a chemical reaction has reached equilibrium, the concentrations of the reactants and products do not change. The forward and reverse reactions continue to occur, but at the same rate.
d. when an equilibrium system is changing at the molecular level, it is called adynamic equilibrium
e. when reactants and products of a reaction are all in the same phase and the system reaches equilibrium, it is called a homogeneous equilibrium
f. when the reactants and products of a reaction are not in the same phase and the system reaches equilibrium, it is called a heterogeneou equilibrium
g. an equilibrium can only be achieved in a closed system at a constant temperature or in an isolated system.
2. define K_{c} to predict the extent of the reaction and write equilibrium-law expressions for given chemical equations, using lowest whole-number coefficients
a. according to the Law of Equilibrium, when a chemical system reaches equilibrium, there is a constant ratio of products and reactants in a chemical reaction
b. write the equilibrium law expression for any homogeneous (see general form p . 641)
i. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<====\Rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
K c=\frac{[\mathrm{H} 2 \mathrm{O}(\mathrm{~g})]^{2}}{\left[\mathrm{H}_{2(\mathrm{~g})}\right]^{2}\left[\mathrm{O}_{2(\mathrm{~g})}\right]}
$$

c. be able to write the equilibrium law expression for any heterogeneous reaction (see discussion p. 644)
i. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<======>\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{Kc}=\frac{\left[\mathrm{NH}_{4}{ }^{ \pm} \frac{(\mathrm{aq})}{} \frac{\left[\mathrm{OH}^{-}\right.}{(\mathrm{aq})}\right]}{\left[\mathrm{NH}_{3(\mathrm{aq})}\right]}
$$

ii. in heterogeneous reactions, there is often a pure liquid or solid. Since the concentration of these pure substances does not change, there concentrations are not included in the equilibrium law expression
d. Certain conditions generally exist and can be described qualitatively
i. when $\mathrm{K}>1$, products are favoured
ii. when $\mathrm{K} \approx 1$, there are approximately equal concentrations of products and reactants at equilibrium
iii. when $\mathrm{K}<1$, reactants are favoured
iv. these statements are generalizations and depend on the form of the equilibrium expression
3. predict, qualitatively, using Le Chatelier's principle, shifts in equilibrium caused by changes in temperature, pressure, volume, concentration or the addition of a catalyst and describe how these changes affect the equilibrium constant
a. Le Chatelier's principle states that a dynamic equilibrium tends to respond so as to relieve the effect of any change in the conditions that affect the equilibrium
b. a change in temperature is the only condition that can cause a change in the equilibrium constant
c. Generally the following conditions will have the following results (p. 650)
i. increasing a reactant shift toward the (products / reactants)
ii. decreasing a product shift toward the (products / reactants)
iii. decreasing a reactant shift toward the (products / reactants)
iv. increasing a product shift toward the (products / reactants)
v. using a catalyst no effect - equilibrium reached faster
vi. increasing temp in exo reaction shift toward the (products / reactants)
vii. increasing temp in endo reaction shift toward the (products / reactants)
viii. decreasing temp in endo reaction shift toward the (products / reactants)
ix. decreasing temp in exo reaction shift toward the (products / reactants)
for vi. - ix. the Kc value will also change because the temperature changes
x . decreasing volume - increasing pressure shift toward side with least coeff.
xi. increasing volume - decreasing pressure shift toward side with most
coeff.
x and xi hold unless sums of coefficients are equal on both sides
xii. adding a non reacting gas no effect
4. The reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})<=====>2 \mathrm{NO}_{2}(\mathrm{~g})$ is endothermic with a $\mathrm{H}=+56.9 \mathrm{~kJ} / \mathrm{mol}$. How will the amount of NO_{2} at equilibrium be affected by
a. adding $\mathrm{N}_{2} \mathrm{O}_{4}$ (increased, decreased, not affected)
b. lowering the pressure (increased, decreased, not affected)
c. increasing the volume of the container (increased, decreased, not affected)
d. raising the temperature (increased, decreased, not affected)
e. adding a catalyst to the system (increased, decreased, not affected)
f. Which of these will alter the value of $K_{\text {eq }} \mathbf{d}$
5. When 4.0 moles of PCl_{5} is heated in a 10.0 L container, an equilibrium is established in which 2.5 moles of Cl_{2} is present. $\mathrm{PCl}_{5(\mathrm{~g})}<====>\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
a. What are the equilibrium concentrations of all three components?

b. What is the K_{c} value for the reaction?

$$
\mathrm{Kc}=\frac{\left[\mathrm{PCl}_{3(\mathrm{~g})}\right]\left[\mathrm{Cl}_{2(\mathrm{~g})}\right]}{\left[\mathrm{PCl}_{5(\mathrm{~g})}\right]}
$$

$\mathrm{Kc}=(0.25 \mathrm{~mol} / \mathrm{L})(0.25 \mathrm{~mol} / \mathrm{L}) / 0.15 \mathrm{~mol} / \mathrm{L}=0.42$ (units unnecessary)
6. When 1.00 mole of NH_{3} gas and 0.40 moles of N_{2} gas are placed in a 5.0 L container and allowed to reach an equilibrium at a certain temperature, it is found that 0.75 moles of NH_{3} is present. The reaction is:
a. What are the concentrations of H_{2} and N_{2} at equilibrium?

$$
\begin{aligned}
& 2 \mathrm{NH}_{3(\mathrm{~g})}<======>3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \\
& \begin{array}{lccc}
\text { I } & 0.20 \mathrm{~mol} / \mathrm{L} & & \mathbf{0 . 0 8 0} \mathrm{~mol} \\
\text { C } & -2 \mathrm{x} & +3 \mathrm{x} & +\mathbf{x}
\end{array}
\end{aligned}
$$

final concentration of $\mathrm{NH} 3=0.75 \mathrm{~mol} / 5 \mathrm{~L}=0.15 \mathrm{~mol} / \mathrm{L}$
final moles of $\mathrm{NH} 3=0.75$ so $0.20-0.15=0.05$ change

\[

\]

b. What is the K_{c} for this reaction at this temperature?

$$
\begin{aligned}
& \mathrm{Kc}=\frac{\left[\mathrm{H}_{2(\mathrm{~g})}\right]^{3}\left[\mathrm{~N}_{2(\mathrm{~g})}\right]}{\left[\mathrm{NH}_{3(\mathrm{~g})}\right]^{2}} \\
&=(0.075 \mathrm{~mol} / \mathrm{L})^{3}(0.105 \mathrm{~mol} / \mathrm{L}) /(0.15 \mathrm{~mol} / \mathrm{L})^{2} \\
&=0.015
\end{aligned}
$$

7. A mixture of H_{2} and I_{2} is allowed to react st $448^{\circ} \mathrm{C}$. When equilibrium is established, the concentrations of the participants are found to be $\left[\mathrm{H}_{2}\right]=0.46 \mathrm{~mol} / \mathrm{L},\left[\mathrm{I}_{2}\right]=0.39 \mathrm{~mol} / \mathrm{L}$, and $[\mathrm{HI}]=3.0 \mathrm{~mol} / \mathrm{L}$.
a. Calculate the value of the K_{eq} at $448^{\circ} \mathrm{C} . \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})<=====>2 \mathrm{HI}(\mathrm{g})$
$\mathrm{Kc}=$ $[\mathrm{HI}(\mathrm{g})]^{2}$
$\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]$
$=(3.0 \mathrm{~mol} / \mathrm{L})^{2} /(0.46 \mathrm{~mol} / \mathrm{L})(0.39 \mathrm{~mol} / \mathrm{L})$
$=50$
8. The equilibrium constant, for the reaction represented below, is 50 at $448^{\circ} \mathrm{C}$

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}<=\Rightarrow 2 \mathrm{HI}_{(\mathrm{g})}
$$

- What are the equilibrium concentrations of each species, when 0.50 moles of H_{2} is mixed with 0.50 moles of I 2 in a 0.50 L container and allowed to react at $448^{\circ} \mathrm{C}$?

$$
\mathbf{H}_{2(\mathrm{~g})}+\mathbf{I}_{2(\mathrm{~g})} \ll=2 \mathbf{H I}_{(\mathrm{g})}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\text { I } & 1.0 & 1.0 & 0
\end{array} \\
& \text { C } \\
& \text { E } \\
& \begin{array}{ll}
1.0 & 1.0 \\
-\mathrm{x} & -\mathrm{x}
\end{array} \\
& +2 x \\
& \text { 2x } \\
& K c=\frac{[H I(g)]^{2}}{\left[\mathbf{H}_{2(\mathrm{~g})}\right]\left[\mathrm{I}_{2(\mathrm{~g})}\right]} \quad 50=\frac{(2 \mathrm{x})^{2}}{(1.0-\mathrm{x})(1.0-\mathrm{x})} \\
& \begin{array}{l}
50=\frac{(2 x)^{2}}{(1.0-x)^{2}} \\
7.07=\frac{x}{1.0-x}
\end{array} \\
& 7.07-7.07 \mathrm{x}=2 \mathrm{x} \\
& 7.07=9.07 x \\
& x=0.78 \mathrm{~mol} / \mathrm{L} \\
& \text { number } \\
& \mathrm{H}_{2(\mathrm{~g})}=1.0-\mathrm{x}=1.0-\mathbf{0 . 7 8}=\mathbf{0 . 2 2} \mathrm{mol} / \mathrm{L} \\
& \mathrm{I}_{2(\mathrm{~g})}=1.0-\mathrm{x}=1.0-\mathbf{0 . 7 8}=\mathbf{0 . 2 2} \mathrm{mol} / \mathrm{L} \\
& \mathrm{HI}(\mathrm{~g})=2 \mathrm{x}=2(0.78)=1.56 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

9. if the equilibrium constant for a reaction is very small, (less than 1000x the concentration of the reactants), x can be eliminated from the bottom of the equation.
10. color intensity can be used to quantitatively measure the amount of a product or reactant at equilibrium
11. Apply equilibrium knowledge in various life examples including
a. SCUBA diving
i. large pressure on a SCUBA diver in deep water changes the equilibrium between gaseous nitrogen and dissolved nitrogen in the lining of the lungs and thus in the blood stream.
ii. high concentrations of nitrogen in the blood can cause nitrogen narcosis with results similar to alcohol impairment
iii. high concentrations of nitrogen in the blood can form bubbles in the blood if a diver rises to quickly after being submerged for an extended time a depth. This is referred to as the bends.
b. carbon monoxide poisoning in houses
i. carbon monoxide bonding is favoured when compared to oxygen bonding to the hemoglobin molecule in red blood cells. Carbon monoxide poisoning results in oxygen deprivation.
c. formation of stalagmites, stalactites and corals
i. the equilibrium between solid calcium carbonate and dissolved carbonic acid is responsible for the formation of the above calcium deposits. Write an equation that shows this equilibrium.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \leftarrow \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

d. Haber-Bosch process for manufacturing ammonia
i. an understanding of the effects of pressure and temperature on the position of equilibrium between nitrogen and hydrogen gases and ammonia allowed Haber and Bosch to develop an efficient method of synthesizing ammonia. Write an equation that shows this equilibrium

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-92 \mathrm{~kJ} / \mathrm{mol}
$$

ii. Predict 3 ways to improve the production of ammonia in the process using LeChatelier's ideas.
increase the reactants
remove the products
take away heat - but keep it at a high enough temperature to react increase the pressure

Equilibrium Applied to Acids and Bases (15\% of Chemistry 30)
Key Concepts:

- acid-rain and its effects
- Brønsted-Lowry acids and bases
- acid-base equilibrium
- conjugate pairs of acids and bases
- amphiprotic substances
- titration curves
- equilibrium law expression
- equilibrium constants
- $\mathrm{K}_{\mathrm{w}}, \mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$
- buffers
- indicators

1. describe the processes involved in acid rain formation and acid deposition
a. carbon dioxide in air reacts with rain water to form carbonic acid which makes natural rain water slightly acidic
b. motor vehicles with combustion engines release nitrogen oxides into the atmosphere
c. power and heating plants that burn fossil fuels and smelting plants release sulfur oxides into the atmosphere
d. when nitrogen oxides or sulfur oxides react with water in the atmosphere they form nitrous acid, nitric acid, sulphurous acid and sulphuric acid which fall to Earth as acid deposition
e. acid deposition harms plant and animal life on land and in lakes and streams by (increasing / reducing) pH
f. Alberta's predominantly limestone geological formations buffer ponds and lake water
g. acidic lakes and ponds can be treated with limestone to reduce the damage caused by acidic shock in spring when acidic snow melts and flows into bodies of water
2. describe Brønsted-Lowry acids and bases
a. Brønsted and Lowry developed a theory of acids and bases that was more general than that of Arrhenius
b. A Brønsted-Lowry acid is a proton donor
c. A Brønsted-Lowry base is a proton acceptor
3. identify acid base conjugate pairs
a. According to the Brønsted-Lowry theory, an acid must react with a base and vice versa
b. When a Brønsted-Lowry acid donates a proton it becomes the conjugate base of the acid
c. When a Brønsted-Lowry base accepts a proton it becomes the conjugate acid of the base
4. a compound that can either donate or accept a proton is called an amphiprotic substance
i. water is an amphiprotic substance
ii. anions formed from polyprotic acids losing one hydrogen ion are amphiprotic.
5. write Brønsted-Lowry equations, including indicators, and predict whether reactants or products are favoured for acid-base equilibrium reactions for monoprotic and polyprotic acids and bases
a. the position of the acid base equilibrium can be predicted using an acid base table
i. If the acid on the reactants side is stronger than the acid on the products side, the products will be favoured at equilibrium
ii. If the acid on the products side is stronger than the acid on the reactants side, the reactants will be favoured at equilibrium
6. Label the acid and base and the conjugate base and conjugate base
a. $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$
base acid c.acid c.base
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
acid base c.base c.base
7. recall the concepts of pH and hydronium ion concentration and pOH and hydroxide ion concentration, in relation to acids and bases
8. a strong acid ionizes $\mathbf{1 0 0 \%}$
9. the equilibrium for the ionization of a weak acid or base can be treated in a similar way as the equilibrium for any reaction.
a. The equation for an acid is usually written with water as a reactant.

$$
\begin{aligned}
& \underset{(\mathrm{aq})}{\mathrm{HB}_{\text {aq }}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \text { conj base }
\end{aligned} \underset{\text { cond }}{\mathrm{B}_{(\mathrm{aq})}^{-}}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}
$$

b. the equilibrium constant for the ionization of a weak acid is called the acid ionization constant and is given the symbol, Ka
c. the equilibrium expression for the ionization of an acid can be written (see p. 691) The ion product for water is symbolized K_{w}
i. $K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
ii. at $25^{\circ} \mathrm{C}, K_{\mathrm{w}}=\mathbf{1 . 0} \times 10^{-14}$
d. the equilibrium constant for a ionization of a weak base is called the base ionization constant and is given the symbol, $\mathbf{K b}$
e. the equilibrium expression for the ionization of a base can be written (see p. 696)
f. the equation for a base is also written with water as a reactant

$$
\begin{aligned}
& \underset{(\mathrm{aq)}}{\mathrm{B}_{-}^{-}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{HB}_{(\mathrm{aq})}+\mathrm{OH}_{(\text {aq) }}^{-} \\
& \text {conj acid }
\end{aligned}
$$

g. at $25^{\circ} \mathrm{C}, \mathrm{pH}+\mathrm{pOH}=14$
h. $\quad K_{\mathrm{b}}$ can be calculated by using $K_{\mathrm{w}} / K_{\mathrm{a}}$ for the conjugate acid
10. and use these to determine $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of acidic and basic solutions
a. find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH of $0.0100 \mathrm{~mol} / \mathrm{L}$ of hypochlorous acid

	$\underset{\mathrm{HOCl}}{(\mathrm{aq})}{ }^{\text {(}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \rightarrow \mathrm{OCl}_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$		
I	$\mathbf{0 . 0 1 0 0 ~ M ~}$	0	0
C	-x	+x	+x
E	0.01-x	\mathbf{x}	\mathbf{x}

$$
\left.\mathrm{Ka}=\frac{\left[\mathrm{OCl}^{-}{ }_{(\mathrm{aq})}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.}{\left[\mathrm{HOCl} \mathrm{a}_{(\mathrm{aq})}\right]}\right]
$$

$4.0 \times 10-8=\frac{x^{2}}{0.01-x} \quad x$ can be eliminated

$$
\begin{gathered}
4.0 \times 10^{-10}=\mathrm{x}^{2} \\
\mathrm{x}=2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}=\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq}}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}\right]=-\log \left(6.3 \times 10^{-5}\right)=4.70
\end{gathered}
$$

b. find the $\left[\mathrm{OH}^{-}\right]$and pH of $0.0100 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3 \text { (aq) }}$
$\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{4}{ }_{(\text {aq) }}+\mathrm{OH}_{(\text {(aq })}^{-}$
I
C
E 0.010-x

$\mathbf{0}$	$\mathbf{0}$
$\mathbf{+ x}$	$\mathbf{+ x}$
\mathbf{x}	\mathbf{x}

$$
\left.\mathbf{K b}=\frac{\left[\mathbf{N H}_{4}{ }_{4}^{ \pm}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}\right.}{\left[\mathbf{N H}_{3(\mathrm{aq})}\right]}\right]
$$

$$
\begin{aligned}
& \mathrm{Kb}=1.0 \times 10^{-14} / \mathrm{Ka} \\
& \mathrm{~Kb}=1.0 \times 10^{-14} / 5.6 \times 10^{-10} \\
& \mathrm{~Kb}=1.8 \times 10^{-5} \\
& 1.8 \times 10^{-5}=\frac{\mathbf{x}^{2}}{0.01-\mathrm{x}} \quad \times \text { can be eliminated } \\
& 1.8 \times 10^{-7}=\mathrm{x}^{2} \\
& \times 4.3 \times 10^{-4}=\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=1.0 \times 10^{-14} /\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right] } & {\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=1.0 \times 10^{-14} / 4.3 \times 10^{-4} } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=2.4 \times 10^{-11} \mathrm{~mol} / \mathrm{L} } \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right] & \mathrm{pH}=-\log \left(2.4 \times 10^{-11} \mathrm{~mol} / \mathrm{L}\right)
\end{aligned}
$$

Note: Examples that require the application of the quadratic equation are excluded

- you can use the same strategy when solving problems involving Ka that you used when solving problems for Kc
- the rule of 1000 allows you to determine whether you can use the approximation that the equilibrium concentration of a weak acid or base is approximately equal to the initial concentration

11. Acid base indicators
a. indicators change color over a small pH range, they can be used to show the endpoint of a titration
b. indicators are weak acids and their conjugate bases that have different colors depending on the $\mathbf{p H}$ of the solution they are found in
c. to observe the pH throughout a titration of an acid or a base, you need to use a pH meter. If the results are graphed a pH or titration curve is the result
d. a buffering region is a region shown in a titration curve in which the pH changes slowly, they proceed a quick change in the pH which can be used to calculate the concentration of the acid or base

Graph of pH vs Volume of Base

12. Using the curve above
a. Draw in a smooth curve
b. locate the equivalence point on the graph. $\sim \mathbf{1 8 . 0} \mathbf{~ m L}$
c. What is the pH value at this point? ~ 7.8
d. locate the buffering region (between 2 mL and $\mathbf{1 5} \mathbf{~ m L}$)
e. this is a titration of a (weak / strong) (acid / base) with a strong (acid / base)
f. the concentration of the base is $0.500 \mathrm{~mol} / \mathrm{L}$. What is the concentration of the acid if 10.00 mL of the acid was used in the titration?
$\mathbf{n}=\mathbf{c v}=\mathbf{0 . 5 0 0} \mathrm{mol} / \mathrm{L} \times 0.0180 \mathrm{~L}=\mathbf{0 . 0 0 9 0 0} \mathrm{mol}$
$0.00900 \mathrm{~mol} \times 1 / 1=0.00900 \mathrm{~mol}$
$\mathbf{c}=\mathbf{n} / \mathrm{v} 0.00900 \mathrm{~mol} / 0.0100 \mathrm{~L}=0.900 \mathrm{~mol} / \mathrm{L}$
g. describe how the titration curve would have looked if HCl were used instead of this acid. (would have started lower closer to $1 \mathbf{p H}$)
h. describe how the titration curve would have looked if H2SO4(aq) were used instead of this acid (would have had two steep sections, instead of 1)
i. describe how the titration curve would have looked if $\mathrm{NaOH}(\mathrm{aq})$ were titrated with a strong acid (opposite of f, $\mathbf{p H}$ starts near 13, buffers, drops and finishes near 1)
13. define a buffer as relatively large amounts of a weak acid or base and its conjugate in equilibrium that maintain a relatively constant pH when small amounts of acid or base are added.
a. a buffer solution resists a change in $\mathbf{p H}$ on addition of a little strong base or strong acid
b. a solution that contains a weak acid-conjugate base mixture, or a weak baseconjugate acid mixture is called a buffer.
c. you can control the $\mathbf{p H}$ range of the buffer by choosing an acid-base pair carefully
d. the most important buffer system in the blood stream is the equilibrium among carbon dioxide, water, carbonic acid, hydrogen carbonate ion
e. the ability of hemoglobin in red blood cells to carry oxygen is sensitive to pH . If the pH falls below 7.34 , acidosis result. If the pH rises above 7.44 , alkalosis results.

