CHEM 102 Class 5

Writing ICE tables

(1) Write an ICE table (but don't solve it) for 1.0 M SO₃ reacting with 2.0 M H₂O according to the equation SO₃(g) + H₂O(g) $_{-}$ H₂SO₄(g)

	SO ₃ (g)	$+ H_2O(g)$	- H ₂ SO ₄ (g)
Initial	1.0 M	2.0 M	0
Change	- X	- X	+ x
Equilibrium	1.0 - x	1.0 - x	х

(2) Write an ICE table (but don't solve it) for 0.66 atm H₂ reacting with 1.28 atm O₂ according to the equation $2 H_2(g) + O_2(g) - 2 H_2O(g)$

	2 H ₂ (g)	$+ O_2(g)$	_ 2 H ₂ O(g)
Initial	0.66 atm	1.28 atm	0
Change	- 2x	- X	+ 2x
Equilibrium	0.66 - 2x	1.28 - x	2x

(3) In a container of 10.0 L volume, I mix 1.0 mol N₂, 1.0 mol H₂ and 0.5 mol O₂. Write an ICE table (but don't solve it) for the equilibrium $N_2(g) + 4 H_2(g) + O_2(g) - N_2H_4(g) + 2 H_2O(g)$

The initial concentrations of the gases are N_2 = 1.0 mol / 10.0 L = 0.1 M, H_2 = 1.0 mol / 10.0 L, O_2 = 0.5 mol / 10.0 L = 0.05 M

	N ₂ (g)	+ 4 H ₂ (g)	O ₂ (g)	_ N ₂ H ₄ (g)	+ 2 H ₂ O(g)
Initial	0.1 M	0.1 M	0.05 M	0	0
Change	- X	- 4x	- X	+ x	+ 2x
Equilibrium	0.1 - x	0.1 - 4x	0.05 - x	Х	2x

Solving equilibrium problems – finding K

(4) In the reaction 2 NO₂(g) $_N_2O_4(g)$ the initial concentration of N₂O₄ was 0.100 M and NO₂ was 0.000 M. At equilibrium, the concentration of N₂O₄ was measured as 0.009 M. Calculate K_c.

First set up an ICE table

	NO ₂	N ₂ O ₄
Initial	0.000	0.100
Change	+2x	-X
Equilibrium	0.000 + 2x	0.009

We can see from the last column that x must be 0.100 M - 0.009 M = 0.091 M. We can now calculated the equilibrium value of NO₂ as $0.000 + (2 \times 0.091) = 0.182 \text{ M}$. Hence the value for K_c is

$$K_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}} = \frac{0.009 \text{ M}}{0.182 \text{ M}^{2}} = 0.27$$

(5) In the reaction $2 \text{ NO}_2(g) \text{ }_N_2O_4(g)$ the initial concentration of NO₂ was 0.250 M and N₂O₄ was 0.000 M. At equilibrium, the concentration of N₂O₄ was measured as 0.0133 M. (a) Calculate the equilibrium concentration of NO₂ (b) Calculate K_c.

First set up an ICE table

	NO ₂	N ₂ O ₄
Initial	0.250	0.000
Change	-2x	+x
Equilibrium	0.250 - 2x	0.0133

We can see from the last column that x must be 0.0133 M.

(a) We can now calculate the equilibrium value of NO₂ as 0.250 - 2x = 0.250 - 0.0266 = 0.2234 M

(b) Hence the value for K_c is

$$K_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}} = \frac{0.0133 \text{ M}}{0.2234 \text{ M}^{2}} = 0.27$$

Notice that the initial composition was very different than in (4), that the equilibrium amounts of the gases are different but K_c is the same! It doesn't matter whether you start with reactants, as in (4), or products, as in (5), the same value of K is reached at equilibrium.

(6) Initially, a mixture of 0.100 M NO, 0.050 M H₂ and 0.100 M H₂O was allowed to reach equilibrium. There was no N₂ present initially. At equilibrium, the concentration of NO was found to be 0.062 M. Calculate K_c .

	NO	H ₂	N ₂	H ₂ O
Initial	0.100 M	0.050 M	0.000 M	0.100 M
Change	- 2x	- 2x	+x	+ 2x
Equilibrium	0.062 M			

 $2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) - \operatorname{N}_2(g) + 2 \operatorname{H}_2O(g)$

Note the change in the NO concentration was (0.100 M - 0.062 M) = 0.038 M. This represents a decrease of 2x so x = 0.019. Now we know x, we can complete the ICE table

	NO	H ₂	N_2	H ₂ O
Initial	0.100 M	0.050 M	0.000 M	0.100 M
Change	-0.038 M	-0.038 M	+0.019 M	+0.038 M
Equilibrium	0.062 M	0.012 M	0.019 M	0.138 M

Finally, we can calculate K_c

$$K_{c} = \frac{[N_{2}] \cdot [H_{2}O]^{2}}{[NO]^{2} \cdot [H_{2}]^{2}} = \frac{[0.019] \cdot [0.138]^{2}}{[0.062]^{2} \cdot [0.012]^{2}} = 650$$

Solving equilibrium problems – given K

(7) In the following reaction, $K_p = 9.3 \times 10^{-7}$ at room temperature. Calculate the equilibrium concentration of N₂O₄ in a flask initially containing only 3.00 atm of NO₂

$$2 \ NO_2(g) \ _ \ N_2O_4(g)$$

NO_2	N_2O_4

Initial	3.00 atm	0.00 atm
Change	- 2x	+x
Equilibrium	3.00 - 2x	X

Insert into the expression for K_p

$$K_{p} = \frac{p(N_{2}O_{4})}{p(NO)^{2}} = \frac{x}{(3.00 - 2x)^{2}} = 9.3x10^{-7}$$

Because K_p is very small, we expect the concentration of N_2O_4 to be very small compared with the concentration of NO_2 and we can set 3.00 - 2x = 3.00.

$$K_{p} = \frac{x}{(3.00)^{2}} = 9.3 \times 10^{-7}$$
$$x = 8.4 \times 10^{-6} \text{ atm}$$

Check to see if x is less than 5% of the initial value, $(8.4 \times 10^{-6} \text{ atm} / 3.00 \text{ atm}) \times 100 = 2.8 \times 10^{-4} \%$ - assumption OK

Check the value of $K_p = 8.4 \times 10^{-9} / 3.00^2 = 9.33 \times 10^{-7}$ (8) Iodine molecules dissociate at high temperature according to the reaction

 $I_2(g) _ 2 I(g)$

If $K_p = 4.5 \times 10^{-4}$ and the reaction initially starts with only I_2 with a pressure of 1.000 atm, what is the pressure of (a) $I_2(g)$ and (b) I(g) at equilibrium?

	I ₂ (g)	I(g)
Initial	1.000	0.000
Change	-X	+2x
Equilibrium	1.000 - x	2x

Insert into the expression for K_p

$$K_{p} = \frac{p(I)^{2}}{p(I_{2})}$$

$$4.5x10^{-4} = \frac{(2x)^{2}}{1.000 - x}$$

$$1.00 - x \cdot (4.5x10^{-4}) = 4x^{2}$$

$$4.5x10^{-4} - 4.5x10^{-4}x = 4x^{2}$$

$$4.5x10^{-4} = 4x^{2} + 4.5x10^{-4}x$$

$$0 = 4x^{2} + 4.5x10^{-4}x - 4.5x10^{-4}$$

This is a quadratic equation with solutions x = 0.0105 or -0.0106. The negative solution must be incorrect) otherwise the equilibrium concentration of I(g) would be negative).

(a) The pressure of I₂ at equilibrium is 1.000 atm - 0.0105 atm = 0.989 atm

(b) The pressure of I at equilibrium is 2x = 0.021 atm

(9) 0.05 mol H₂(g) and and 0.05 mol Br₂(g) are placed together in a 5.0 L flask and heated to 700 K. What is the concentration of each substance in the flask at equilibrium if $K_c = 64$ at 700 K?

$$H_2(g) + Br_2(g) - 2 HBr(g)$$

The initial concentrations are $[H_2] = [Br_2] = 0.05 \text{ mol} / 5.0 \text{ L} = 0.01 \text{ M}$ and [HBr] = 0.

	H ₂ (g)	$Br_2(g)$	HBr(g)
Initial	0.01 M	0.01 M	0
Change	- X	- X	+ 2x
Equilibrium	0.01 - x	0.01 - x	2x

Insert into the equilibrium expression, assume that x is small in the denominator and solve

$$K_{c} = \frac{[HBr]^{2}}{[H_{2}] \cdot [Br_{2}]} = \frac{(2x)^{2}}{(0.01 - x) \cdot (0.01 - x)} \approx \frac{4x^{2}}{0.01 \cdot 0.01} = 64$$

$$4x^{2} = 64 \cdot 0.0001$$

$$= 0.0064$$

$$x = \sqrt{\frac{0.0064}{4}} = 0.04$$

Check that 0.04 is small (<5%) compared with the initial concentrations: (0.04 / 0.01) x 100 = 400%. The "x is small" assumption is clearly false here and we must solve a quadratic equation.

$$\begin{split} K_{c} &= \frac{[HBr]^{2}}{[H_{2}] \cdot [Br_{2}]} = \frac{(2x)^{2}}{(0.01 - x) \cdot (0.01 - x)} = \frac{4x^{2}}{0.0001 - 0.02x + x^{2}} = 64\\ 4x^{2} &= 64 \cdot \left(0.0001 - 0.02x + x^{2}\right)\\ &= 0.0064 - 1.28x + 64x^{2}\\ 0 &= 60x^{2} - 1.28x + 0.0064 \end{split}$$

Using the quadratic equation solving formula produces two solutions for x (0.008 and 0.0133). Clearly the last one is inappropriate here (0.01 - x would give a negative concentration) so the answer must be 0.008 M.

Therefore, the concentrations are $[H_2] = [Br_2] = 0.01 \text{ M} - 0.008 \text{ M} = 0.002 \text{ M}$ and [HBr] = 2x = 0.016 M

Check $K_c = (0.016)^2 / (0.002 \times 0.002) = 64$

(10) A mixture consisting of 3.00 mols H_2O_2 , 2.00 mols O_2 and 5.00 mols of H_2 in a 5.00 L container was heated to 900 K and allowed to reach equilibrium. Determine the equilibrium amounts of each substance if $K_c = 0.0076$ at 900 K.

$$H_2O_2(g) - O_2(g) + H_2(g)$$

Initial concentrations $[H_2O_2] = 3.00 \text{ mols} / 5.00 \text{ L} = 0.600 \text{ M}$, $[O_2] = 2.00 \text{ mols} / 5.00 \text{ L} = 0.400 \text{ M}$, $[H_2] = 5.00 \text{ mols} / 5.00 \text{ L} = 1.000 \text{ M}$

	$H_2O_2(g)$	O ₂ (g)	H ₂ (g)
Initial	0.600 M	0.400 M	1.000 M
Change	?	?	?
Equilibrium	?	?	?

We do not yet know whether we are moving towards equilibrium (in which case $[H_2O_2]$ will decrease) or whether we are past equilibrium (in which case $[H_2O_2]$ will increase.

Calculating Q

$$Q_{c} = \frac{[O_{2}] \cdot [H_{2}]}{[H_{2}O_{2}]} = \frac{(0.4) \times (1.0)}{0.6} = 0.67$$

Since Q is greater than K we are past equilibrium and as we move towards it we will decrease the product concentrations and increase the reactant

	$H_2O_2(g)$	O ₂ (g)	H ₂ (g)
Initial	0.600 M	0.400 M	1.000 M
Change	+ x	- X	- X
Equilibrium	0.600 + x	0.400 - x	1.000 – x

$$K_{c} = \frac{[O_{2}] \cdot [H_{2}]}{[H_{2}O_{2}]} = \frac{(0.4 - x) \times (1 - x)}{(0.6 + x)} = 0.0076$$
$$(0.4 - x) \times (1 - x) = 0.0076 \cdot (0.6 + x)$$
$$0.4 - 1.4x + x^{2} = 0.00456 + 0.0076x$$
$$x^{2} - 1.4076x + 0.395 = 0$$

Solving this gives x = 1.02 or 0.387. Clearly the first answer is inappropriate so x = 0.387. Hence, the concentrations at equilibrium are $[H_2O_2] = 0.6 + 0.39 = 0.99$ M, $[O_2] = 0.4 - 0.39 = 0.01$ M and $[H_2] = 1 - 0.39 = 0.61$ M.

Check $K_c = 0.01 \times 0.61 / 0.99 = 0.0062$ (close to 0.0076 with rounding errors)