CHEM 102 Class 5

Writing ICE tables

(1) Write an ICE table (but don't solve it) for $1.0 \mathrm{M} \mathrm{SO}_{3}$ reacting with $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ according to the equation $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})-\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})$

	$\mathrm{SO}_{3}(\mathrm{~g})$	$+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$-\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})$
Initial	1.0 M	2.0 M	0
Change	-x	-x	+x
Equilibrium	$1.0-\mathrm{x}$	$1.0-\mathrm{x}$	x

(2) Write an ICE table (but don't solve it) for $0.66 \mathrm{~atm} \mathrm{H}_{2}$ reacting with $1.28 \mathrm{~atm} \mathrm{O}_{2}$ according to the equation $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

	$2 \mathrm{H}_{2}(\mathrm{~g})$	$+\mathrm{O}_{2}(\mathrm{~g})$	$-2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Initial	0.66 atm	1.28 atm	0
Change	-2 x	-x	+2 x
Equilibrium	$0.66-2 \mathrm{x}$	$1.28-\mathrm{x}$	2 x

(3) In a container of 10.0 L volume, I mix $1.0 \mathrm{~mol}_{2}, 1.0 \mathrm{~mol} \mathrm{H}_{2}$ and $0.5 \mathrm{~mol} \mathrm{O}_{2}$. Write an ICE table (but don't solve it) for the equilibrium $\mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})-\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The initial concentrations of the gases are $\mathrm{N}_{2}=1.0 \mathrm{~mol} / 10.0 \mathrm{~L}=0.1 \mathrm{M}, \mathrm{H}_{2}=1.0 \mathrm{~mol} /$ $10.0 \mathrm{~L}, \mathrm{O}_{2}=0.5 \mathrm{~mol} / 10.0 \mathrm{~L}=0.05 \mathrm{M}$

	$\mathrm{N}_{2}(\mathrm{~g})$	$+4 \mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$	$-\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$	$+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Initial	0.1 M	0.1 M	0.05 M	0	0
Change	-x	-4 x	-x	+x	+2 x
Equilibrium	$0.1-\mathrm{x}$	$0.1-4 \mathrm{x}$	$0.05-\mathrm{x}$	x	2 x

Solving equilibrium problems - finding K

(4) In the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ was 0.100 M and NO_{2} was 0.000 M . At equilibrium, the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ was measured as 0.009 M . Calculate K_{c}.

First set up an ICE table

	NO_{2}	$\mathrm{~N}_{2} \mathrm{O}_{4}$
Initial	0.000	0.100
Change	+2 x	-x
Equilibrium	$0.000+2 \mathrm{x}$	0.009

We can see from the last column that x must be $0.100 \mathrm{M}-0.009 \mathrm{M}=0.091 \mathrm{M}$. We can now calculated the equilibrium value of NO_{2} as $0.000+(2 \times 0.091)=0.182 \mathrm{M}$. Hence the value for K_{c} is

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{0.009 \mathrm{M}}{0.182 \mathrm{M}^{2}}=0.27
$$

(5) In the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}){ }_{2} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ the initial concentration of NO_{2} was 0.250 M and $\mathrm{N}_{2} \mathrm{O}_{4}$ was 0.000 M . At equilibrium, the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ was measured as 0.0133 M. (a) Calculate the equilibrium concentration of NO_{2} (b) Calculate K_{c}.

First set up an ICE table

	NO_{2}	$\mathrm{~N}_{2} \mathrm{O}_{4}$
Initial	0.250	0.000
Change	-2 x	+x
Equilibrium	$0.250-2 \mathrm{x}$	0.0133

We can see from the last column that x must be 0.0133 M .
(a) We can now calculate the equilibrium value of NO_{2} as $0.250-2 \mathrm{x}=0.250-0.0266=$ 0.2234 M
(b) Hence the value for K_{c} is

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{0.0133 \mathrm{M}}{0.2234 \mathrm{M}^{2}}=0.27
$$

Notice that the initial composition was very different than in (4), that the equilibrium amounts of the gases are different but K_{c} is the same! It doesn't matter whether you start with reactants, as in (4), or products, as in (5), the same value of K is reached at equilibrium.
(6) Initially, a mixture of $0.100 \mathrm{M} \mathrm{NO}, 0.050 \mathrm{M} \mathrm{H}_{2}$ and $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ was allowed to reach equilibrium. There was no N_{2} present initially. At equilibrium, the concentration of NO was found to be 0.062 M . Calculate K_{c}.

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}){ }_{-} \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

	NO	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
Initial	0.100 M	0.050 M	0.000 M	0.100 M
Change	-2 x	-2 x	+x	+2 x
Equilibrium	0.062 M			

Note the change in the NO concentration was $(0.100 \mathrm{M}-0.062 \mathrm{M})=0.038 \mathrm{M}$. This represents a decrease of 2 x so $\mathrm{x}=0.019$. Now we know x , we can complete the ICE table

	NO	H_{2}	$\mathrm{~N}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
Initial	0.100 M	0.050 M	0.000 M	0.100 M
Change	-0.038 M	-0.038 M	+0.019 M	+0.038 M
Equilibrium	0.062 M	0.012 M	0.019 M	0.138 M

Finally, we can calculate K_{c}

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right] \cdot\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{NO}]^{2} \cdot\left[\mathrm{H}_{2}\right]^{2}}=\frac{[0.019] \cdot[0.138]^{2}}{[0.062]^{2} \cdot[0.012]^{2}}=650
$$

Solving equilibrium problems - given K

(7) In the following reaction, $\mathrm{K}_{\mathrm{p}}=9.3 \times 10^{-7}$ at room temperature. Calculate the equilibrium concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a flask initially containing only 3.00 atm of NO_{2}

$$
2 \mathrm{NO}_{2}(\mathrm{~g}){ }_{-} \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

	NO_{2}	$\mathrm{~N}_{2} \mathrm{O}_{4}$

Initial	3.00 atm	0.00 atm
Change	-2 x	+x
Equilibrium	$3.00-2 \mathrm{x}$	x

Insert into the expression for K_{p}

$$
K_{p}=\frac{p\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)}{\mathrm{p}(\mathrm{NO})^{2}}=\frac{\mathrm{x}}{(3.00-2 \mathrm{x})^{2}}=9.3 \times 10^{-7}
$$

Because K_{p} is very small, we expect the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ to be very small compared with the concentration of NO_{2} and we can set $3.00-2 \mathrm{x}=3.00$.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}} & =\frac{\mathrm{x}}{(3.00)^{2}}=9.3 \times 10^{-7} \\
\mathrm{x} & =8.4 \times 10^{-6} \mathrm{~atm}
\end{aligned}
$$

Check to see if x is less than 5% of the initial value, $\left(8.4 \times 10^{-6} \mathrm{~atm} / 3.00 \mathrm{~atm}\right) \times 100=$ $2.8 \times 10^{-4} \%$ - assumption OK

Check the value of $K_{p}=8.4 \times 10^{-9} / 3.00^{2}=9.33 \times 10^{-7}$
(8) Iodine molecules dissociate at high temperature according to the reaction

$$
\mathrm{I}_{2}(\mathrm{~g}) _2 \mathrm{I}(\mathrm{~g})
$$

If $K_{p}=4.5 \times 10^{-4}$ and the reaction initially starts with only I_{2} with a pressure of 1.000 atm , what is the pressure of $(\mathrm{a}) \mathrm{I}_{2}(\mathrm{~g})$ and $(\mathrm{b}) \mathrm{I}(\mathrm{g})$ at equilibrium?

	$\mathrm{I}_{2}(\mathrm{~g})$	$\mathrm{I}(\mathrm{g})$
Initial	1.000	0.000
Change	-x	+2 x
Equilibrium	$1.000-\mathrm{x}$	2 x

Insert into the expression for K_{p}

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}} & =\frac{\mathrm{p}(\mathrm{I})^{2}}{\mathrm{p}\left(\mathrm{I}_{2}\right)} \\
4.5 \times 10^{-4} & =\frac{(2 \mathrm{x})^{2}}{1.000-\mathrm{x}} \\
1.00-\mathrm{x} \cdot\left(4.5 \times 10^{-4}\right) & =4 \mathrm{x}^{2} \\
4.5 \times 10^{-4}-4.5 \times 10^{-4} \mathrm{x} & =4 \mathrm{x}^{2} \\
4.5 \times 10^{-4} & =4 \mathrm{x}^{2}+4.5 \times 10^{-4} \mathrm{x} \\
0 & =4 \mathrm{x}^{2}+4.5 \times 10^{-4} \mathrm{x}-4.5 \times 10^{-4}
\end{aligned}
$$

This is a quadratic equation with solutions $x=0.0105$ or -0.0106 . The negative solution must be incorrect) otherwise the equilibrium concentration of $\mathrm{I}(\mathrm{g})$ would be negative).
(a) The pressure of I_{2} at equilibrium is $1.000 \mathrm{~atm}-0.0105 \mathrm{~atm}=0.989 \mathrm{~atm}$
(b) The pressure of I at equilibrium is $2 \mathrm{x}=0.021 \mathrm{~atm}$
(9) $0.05 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ and and $0.05 \mathrm{~mol}_{\mathrm{B}}^{2}(\mathrm{~g})$ are placed together in a 5.0 L flask and heated to 700 K . What is the concentration of each substance in the flask at equilibrium if $\mathrm{K}_{\mathrm{c}}=64$ at 700 K ?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})-2 \mathrm{HBr}(\mathrm{~g})
$$

The initial concentrations are $\left[\mathrm{H}_{2}\right]=\left[\mathrm{Br}_{2}\right]=0.05 \mathrm{~mol} / 5.0 \mathrm{~L}=0.01 \mathrm{M}$ and $[\mathrm{HBr}]=0$.

	$\mathrm{H}_{2}(\mathrm{~g})$	$\operatorname{Br}_{2}(\mathrm{~g})$	$\operatorname{HBr}(\mathrm{g})$
Initial	0.01 M	0.01 M	0
Change	-x	-x	+2 x
Equilibrium	$0.01-\mathrm{x}$	$0.01-\mathrm{x}$	2 x

Insert into the equilibrium expression, assume that x is small in the denominator and solve

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right] \cdot\left[\mathrm{Br}_{2}\right]}=\frac{(2 \mathrm{x})^{2}}{(0.01-\mathrm{x}) \cdot(0.01-\mathrm{x})} \approx \frac{4 \mathrm{x}^{2}}{0.01 \cdot 0.01}=64 \\
4 \mathrm{x}^{2} & =64 \cdot 0.0001 \\
& =0.0064 \\
\mathrm{x} & =\sqrt{\frac{0.0064}{4}}=0.04
\end{aligned}
$$

Check that 0.04 is small ($<5 \%$) compared with the initial concentrations: $(0.04 / 0.01) \mathrm{x}$ $100=400 \%$. The " x is small" assumption is clearly false here and we must solve a quadratic equation.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right] \cdot\left[\mathrm{Br}_{2}\right]}=\frac{(2 \mathrm{x})^{2}}{(0.01-\mathrm{x}) \cdot(0.01-\mathrm{x})}=\frac{4 \mathrm{x}^{2}}{0.0001-0.02 \mathrm{x}+\mathrm{x}^{2}}=64 \\
4 \mathrm{x}^{2} & =64 \cdot\left(0.0001-0.02 \mathrm{x}+\mathrm{x}^{2}\right) \\
& =0.0064-1.28 \mathrm{x}+64 \mathrm{x}^{2} \\
0 & =60 \mathrm{x}^{2}-1.28 \mathrm{x}+0.0064
\end{aligned}
$$

Using the quadratic equation solving formula produces two solutions for x (0.008 and 0.0133). Clearly the last one is inappropriate here ($0.01-\mathrm{x}$ would give a negative concentration) so the answer must be 0.008 M .

Therefore, the concentrations are $\left[\mathrm{H}_{2}\right]=\left[\mathrm{Br}_{2}\right]=0.01 \mathrm{M}-0.008 \mathrm{M}=0.002 \mathrm{M}$ and $[\mathrm{HBr}]$ $=2 \mathrm{x}=0.016 \mathrm{M}$

Check $\mathrm{K}_{\mathrm{c}}=(0.016)^{2} /(0.002 \times 0.002)=64$
(10) A mixture consisting of 3.00 mols $\mathrm{H}_{2} \mathrm{O}_{2}, 2.00$ mols O_{2} and 5.00 mols of H_{2} in a 5.00 L container was heated to 900 K and allowed to reach equilibrium. Determine the equilibrium amounts of each substance if $\mathrm{K}_{\mathrm{c}}=0.0076$ at 900 K .

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})-\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Initial concentrations $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=3.00 \mathrm{mols} / 5.00 \mathrm{~L}=0.600 \mathrm{M},\left[\mathrm{O}_{2}\right]=2.00 \mathrm{mols} / 5.00 \mathrm{~L}=$ $0.400 \mathrm{M},\left[\mathrm{H}_{2}\right]=5.00 \mathrm{mols} / 5.00 \mathrm{~L}=1.000 \mathrm{M}$

	$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Initial	0.600 M	0.400 M	1.000 M
Change	$?$	$?$	$?$
Equilibrium	$?$	$?$	$?$

We do not yet know whether we are moving towards equilibrium (in which case $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ will decrease) or whether we are past equilibrium (in which case $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ will increase.

Calculating Q

$$
\mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right] \cdot\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}=\frac{(0.4) \times(1.0)}{0.6}=0.67
$$

Since Q is greater than K we are past equilibrium and as we move towards it we will decrease the product concentrations and increase the reactant

	$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Initial	0.600 M	0.400 M	1.000 M
Change	+x	-x	-x
Equilibrium	$0.600+\mathrm{x}$	$0.400-\mathrm{x}$	$1.000-\mathrm{x}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right] \cdot\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}=\frac{(0.4-\mathrm{x}) \times(1-\mathrm{x})}{(0.6+\mathrm{x})}=0.0076
$$

$$
(0.4-x) \times(1-x)=0.0076 \cdot(0.6+x)
$$

$$
0.4-1.4 x+x^{2}=0.00456+0.0076 x
$$

$$
x^{2}-1.4076 x+0.395=0
$$

Solving this gives $\mathrm{x}=1.02$ or 0.387 . Clearly the first answer is inappropriate $\mathrm{so} \mathrm{x}=$ 0.387. Hence, the concentrations at equilibrium are $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.6+0.39=0.99 \mathrm{M},\left[\mathrm{O}_{2}\right]=$ $0.4-0.39=0.01 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=1-0.39=0.61 \mathrm{M}$.

Check $\mathrm{K}_{\mathrm{c}}=0.01 \times 0.61 / 0.99=0.0062$ (close to 0.0076 with rounding errors)

