Significant Digits

The examples below illustrate the proper use of significant digits for the Chemistry 30 Diploma Examination in a response.

Example 1

A 10.0 mL sample of an unknown weak monoprotic acid is titrated with a standardized $1.20 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. The following data are recorded.

Trial	I	II	III
Final burette reading (mL)	10.10	19.22	28.33
Initial burette reading (mL)	1.00	10.10	19.22
Titrant added (mL)	9.10^{*}	9.12	9.11

2 decimal places (10.10-1.00) according to the addition/subtraction rules

Example 2
The concentration of the weak monoprotic acid is \qquad .

Average volume of titrant added is 9.11 mL

Exact number, therefore does not change the final
number of
significant digits

* Final answer has 3 significant digits (least number present according to the multiplication/division rule)
\qquad .

$$
\begin{aligned}
& K_{\mathrm{a}}=1.8 \times 10^{-5} \text { is approximately }=\frac{x^{2}}{0.100 \mathrm{~mol} / \mathrm{L}} \\
& K_{\mathrm{a}} \text { value has 2 } \\
& \text { significant digits } \begin{aligned}
x & =\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=0.001342 \\
\mathrm{pH} & =-\log (0.001342 \mathrm{~mol} / \mathrm{L}) \\
& =2.87 \text { or } 2.89 \text { (depending on the number of extra digits carried) }
\end{aligned} \\
& \text { Additional digits carried } \\
& \text { through on an interim basis }
\end{aligned}
$$

Example 3

A student conducts a calorimetry experiment to determine the energy transferred when solution A is mixed with Solution B. The data collected is shown below. Assume the specific heat capacity for each solution is the same as water.

Mass of Solution A	100.0 g
Mass of Solution B	100.0 g
Mass of final solution mixture	200.0 g
Initial temperature of solution A and B	$20.0^{\circ} \mathrm{C}$
Final temperature of the solution mixture	$23.0^{\circ} \mathrm{C}$

$\Delta H \quad=m c \Delta t$
$\Delta H \quad=(200.0 \mathrm{~g})\left(4.19 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(3.0{ }^{\circ} \mathrm{C}\right) \longrightarrow \begin{aligned} & \text { The resulting temperature } \\ & \text { has } 2 \text { significant digits. }\end{aligned}$
$\Delta H \quad=2.51 \mathrm{~kJ}$

The final answer should be rounded to the same number of significant digits

The final answer has 3 significant digits because the original data contained 3 significant digits. contained in the original data with the fewest number of significant digits.

Changes to the Chemistry Data Booklet

The most current version of the Chemistry 30 Data Booklet has a publication date of 2010, and a red cover. This version replaces previous versions, which have an earlier publication date and blue covers.

Rationale

- To address feedback received from the field regarding the Chemistry 30 Data Booklet, specifically regarding the solubility table
- To better align the Chemistry 30 Data Booklet with the Chemistry 30 Program of Studies, 2007
- To reflect current values

